28 research outputs found

    Combined Convex Technique on Delay-Distribution-Dependent Stability for Delayed Neural Networks

    Get PDF
    Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both of delay variation limits can be measured. Through combining the reciprocal convex technique and convex technique one, the criterion is presented via LMIs and its solvability heavily depends on the sizes of both time-delay range and its variations, which can become much less conservative than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four numerical examples that our idea reduces the conservatism more effectively than some earlier reported ones

    Combined Convex Technique on Delay-Distribution-Dependent Stability for Delayed Neural Networks

    Get PDF
    Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both of delay variation limits can be measured. Through combining the reciprocal convex technique and convex technique one, the criterion is presented via LMIs and its solvability heavily depends on the sizes of both time-delay range and its variations, which can become much less conservative than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four numerical examples that our idea reduces the conservatism more effectively than some earlier reported ones

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Degradation behaviors of metal-induced laterally crystallized n-type polycrystalline silicon thin-film transistors under DC bias stresses

    No full text
    Device degradation behaviors of typical-sized n-type metal-induced laterally crystallized polycrystalline silicon thin-film transistors were investigated in detail under two kinds of dc bias stresses: hot-carrier (HQ stress and self-heating (SH) stress. Under HC stress, device degradation is the consequence of HC induced defect generation locally at the drain side. Under a unified model that postulates, the establishment of a potential barrier at the drain side due to carrier transport near trap states, device degradation behavior such as asymmetric on current recovery and threshold voltage degradation can be understood. Under SH stress, a general degradation in subthreshold characteristic was observed. Device degradation is the consequence of deep state generation along the entire channel. Device degradation behaviors were compared in low Vd-stress and in high Vd-stress condition. Defect generation distribution along the channel appears to be different in two cases. In both cases of SH degradation, asymmetric on current recovery was observed. This observation, when in low Vd-stress condition, is tentatively explained by dehydrogenation (hydrogenation) effect at the drain (source) side during stress

    Transient analysis of LP rotor from NPP 900MW turbine

    Get PDF
    AbstractThermal stress and the contact stress for centrifuge force field during the start up and shut down is very most important for the safety of the turbine which will affect the design life of the turbine. The stress at startup and shut down is much larger than the stress at other conditions. The stress level and the fatigue life are important for safety and economy of the rotor. In this paper, the mechanical properties of the material varying with the temperature are considered. The vapor pressure and temperature at different position of the rotor and at different history are considered to calculate the film coefficient. The two dimensional thermal-mechanical coupled model is used to calculate the transient temperature field and stress field. The three dimensional contact model is used to calculate the stress field and contact stress under the centrifuge loading conditions

    Influencing factors of new-onset diabetes after a renal transplant and their effects on complications and survival rate.

    No full text
    To discuss the onset of and relevant risk factors for new-onset diabetes after a transplant (NODAT) in patients who survive more than 1 year after undergoing a renal transplant and the influence of these risk factors on complications and long-term survival.A total of 428 patients who underwent a renal transplant between January 1993 and December 2008 and were not diabetic before surgery were studied. The prevalence rate of and relevant risk factors for postoperative NODAT were analyzed on the basis of fasting plasma glucose (FPG) levels, and differences in postoperative complications and survival rates between patients with and without NODAT were compared.The patients in this study were followed up for a mean of 5.65 ± 3.68 years. In total, 87 patients (20.3%) developed NODAT. Patients who converted from treatment with CSA to FK506 had increased prevalence rates of NODAT (P <0.05). Multi-factor analysis indicated that preoperative FPG level (odds ratio [OR]  =  1.48), age (OR  =  1.10), body mass index (OR  =  1.05), hepatitis C virus infection (OR  =  2.72), and cadaveric donor kidney (OR  =  1.18) were independent risk factors for NODAT (All P <0.05). Compared with the N-NODAT group, the NODAT group had higher prevalence rates (P < 0.05) of postoperative infection, hypertension, and dyslipidemia; in addition, the survival rate and survival time of the 2 groups did not significantly differ.Among the patients who survived more than 1 year after a renal transplant, the prevalence rate of NODAT was 20.32%. Preoperative FPG level, age, body mass index, hepatitis C virus infection, and cadaveric donor kidney were independent risk factors for NODAT. Patients who converted from treatment with CSA to FK506 after a renal transplant had aggravated impairments in glycometabolism. Patients with NODAT were also more vulnerable to postoperative complications such as infection, hypertension, and hyperlipidemia

    Comparison of risk factors between NODAT and N-NODAT (single factor analysis).

    No full text
    <p>Abbreviations: NODAT: new onset diabetes after transplantation; N-NODAT: no NODAT; FPG: fasting plasma glucose; AZA: azathioprine; MMF: mycophenolate mofetil; FK506: tacrolimus; CSA: cyclosporin.</p
    corecore